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1. EVO N @ INWP MODELS ~ '

Routine forecasts were initiated at JNWP on 6 May 1955 using

a 3-level model (seé Charney (1.1) ) covering an area somewhat larger

' than the United States. Due to the impoftance of boundary effects, efforts

were made to extend the forecast area as much as poséible within the limita-

tions of the IBM 701 compgter. - The first step in this directionvwas the
introduction of an experimenta} once daily ba.rotropic forecast (see Charney
and Phillips (£.2) ) on September 29, 1.955, covering approximately the area
north of latitude 20 in the western hemisphere and north of latitude 50 in the
eastern hemisphere. This was _follbwed by introdﬁcfion of the 2-level thermo-
tropic model (see Thompson and Gates (1.3) ) on 3 April 1956 covering an
area ‘interm’ediate between those of the 3-level and barotropic vmodels. The
results were so encouraging that on 2 Ju1y<l956 barotropic forecasts were’
increased to twice daily and the 3-level model was dropped completely in
favor of the 2-level thermotropic modveli.

When the iBM 701 computer was deactivated on 3 June 1957, to
make room for the IBM 704, only the barotropic forecast was continued during
the transition period. The bthermotropic model was never reprogrammed for
the 704>; instead a non-integrated 2-level model was developed. Thi; was
put into operation on 4 August 1958 and after 3 weeks was replaced by the
current .'mesh model'’; so-called because it meshed the 500 mb barotropic
forecast with the thickness forecast equation of the non-integrated 2-1‘evel |

model.
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This model has the following characteristics:
a. The 500-mb barotropic forecast can be computed a'sb
a simple marching problem from one field of initial data
and one tendency equation; thus there is no féed back
from data at other levels at any stage. The dependent
variable is the stream.function oﬁ the 500 mb surface
obtained initially by solving the balance equation by the
method described by Shuman (1.4). The forecast equa-
tion is the vorticity equation modified as follows:
{1} The vertical advection of vorticity and

the tilting terms are omitted.
(2) A stratospheric efféct (i.e, Rossby free

surface divergence and reduced gravity)

is included to stabilize (i.e., prevent rapid

retfogression) of the ultra-long waves.
(3) A term is included to approximate the

generation of vorticity by terrain induced

vertical motion.
b. The thickness tendgnc‘y (or geostrophic thermal vorticity)
equation contains the stream function of the mean motion as
an independent variable and thus cannot be integrated as a
simple marching problem. Mean level data must be

supplied at each time step. As first ran, the 2-level

.\.
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. Q)del contalned tendency equations for both theg:mal
‘ vorticity and the vortiqity of the mean motion and had to
be integrated as a marching jury problem - each equation
requiring the output of the other at each time step. Since
, fhe mean level forecas_t obtained by this procedure was
neither better than the barotropic 500 mb forecast in
overall accﬁrécy nor sig'r‘lifica»ntly different in the pre-
diction of baroclinic effects, it was deactivated and the
mean motion data required for the thickness forecast
supplied from the barotropic output. The thickness
forecast equation is the geostrophic thermal vorticity
. equation modiﬁed:as follows:
| ' ‘('1) The vertical advection of vorticity and the tilting
terms are omitted.

(2) The divergence of the thermal wind is approximated

‘Dmax

by = p

(3) Cbm. is in turn approximated from the 1sentrop1c

thermodynamic equation.
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II. THE BAROTROPIC MODEL

A. Derivation

Case studies by Vanderman and Drewes (2.1) and Arnason and
Crestensen (2.2) indicate that the vertical advection of vorticity and tilting
terms tend to be systematic and of opposite sign aﬁd to very nearly cancel
each other over the whole field. Accordingly, unless both terms are re-
tained neither vsvhouldl be retained. These findings were confirmed by a
theoretical investigation by Wiin-Nielsen (2.3). Moreover, in finite differ-
ence form the vertical advection term is normally computed over a single
grid distance and the tilting term over a double grid disténce. This leads

to inconsistent truncation between the two terms which introduces a systema-

tic error into the vorticity of the mean motion when both terms are retained. .
Accordingly both terms have been dropped and the vorticity equation in the

current operational model appears as

2 e 22
+ WU -7 , = O
The vertical velocity is considered to have both synoptic and .

terrain induced components. If we assume that the vertital velocity at the

ground is due entirely to terrain we have

11

{2.2) (De W@ ° Va%‘ (P,j z Dr.una frc.ssvre)

producing divergence at the equivalent barotropic level of

(z..3) ﬁ% ~ -\, :/QVW? (/30 : (oada mé,) .
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. We now derive an expression for the synoptic component ot
the divergence following Wiin-Nielsen (2.4). We use the thermodynamic

equation and equivalent barotropic assumptions.

| v A,
(2.4) '\\/(f) = A(f’/ W J/O = gau:-{qn{

J

where the star denotes values at the equivaleﬁt barotropic level, assumed
to be 500 mb.

This assumption implies that the thermal wind is parallel to
the wind itself and thus there can be no temperature advection. Accordingly

" the thermodynamic equation reduces to

, | v _ | : _ /Dﬁ,\-\,ﬁ

Using for the moment the quasi-geostrophic: approxir;nation

4o . A %
(2.6). Vo= fovﬁ- {/ffxv¢

(2.7) |

20 _ JA G
2p J’/O¢

and consequently
# : %
4Ak ; = m _{3- —J‘A M
(2.8) W T fsi”.fﬂp 3% s dp 3t

Here the stream function, 'U/'*', is defined in terms of the geopotential by

H e* o ' . |
(2.9) 1/ = = (See Phillips (2.5) )

o "
}
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To find g')—, from (8) onely the variation of § with pressure 18 needed.

. 4
S = L Pm® _ RT /¥ -x IR
(2.10) = E = T 5

A : )o =43 - J g
Va 2 &

s 1y 95 = - BRIy '.?_:"} - (.f_«_s;_:_f’_' 4

(2.11) 5/0 Ipa ) noo 73

r

‘Since }‘: < ./ 33 the second term is an order of ma'.gnitude
smaller than the first. Thus to a good order of approximation, at least in
the neighborhood- of p*:

e B (Y

/F |
N = a,g "—-‘fﬁ

Cdp S .

If we now assume that the divergent part of the horizontal wind

(2.12) s = s

Accordinly

{, A ¥ Is
(2.13) (5}:’,, s J/a ot dp = s*p

is negligibly small so that the latter may be approximated in terms of a
stream function and at the same time substitute (3) and (13) into (1) we obtain

the prognostic equation
. R Yu* . 2 » A
(2.14) <v _ %)273; = \/('y/’j ,?"‘/ T QT( J(WJ /__o;_?'/)
| 2 I I/ dA |V |
Here ? a Sf"?*( jﬂ) and a = ll v )

Setting a = .2 in accordance with past practice

1S

‘ -4
(2.15) —~ L . 27 = /g X/o <. 7. .

J/o $ad mb , .
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Y =7 of the lapse rate of the standard atmosph then

| '(,xla’).z.n_ /9. 75_,,)
(2.16) S =

" -y) = L2 2/ = 4,73 x107 c.5.5.
pa zsx:a"/?sy\ 0r -

. 24 [LdAY 21016 e w1/
(2.17) ? T s fa"’ \ JF ) <4-,1Jxrd_q/'5)‘/05‘

)55~ 1070 cog.5.

The so-called stratospheric term (the one containing q) 9£
equation (14) was derived by Cressman (2.6) using Phillips' (2.7) tank
model. Since the physics is more easily visualized in this derivation it is
repeated bélow,

Consider two homogeneous and incompressible fluid layers of
a densities £ and f,4 /o , bounded by rigid horizontal plates é.t z =0 anc

‘ = H. For each fluid layer we may write the primitive equation of horizontal

"motion and the continuity equation as follows:
' W, fKxV = -
(2.18 V, t VYV +& 5 + 4§ KxV « 7p

dur

(2.199 V-V + 35, =6
We now adopt the quasi-static assumption, viz; the vertical acceleration is
small and the balance of forces in the vertical may be'expfessed by the hydro-

: ' < )

, . . (9 e
static equation. Let P{%, 3, 1) be the pressure on the top of the upper
fluid created by interaction between the fluid and the rigid plate at z = H and
let LI(“./ % {/ be the height of the interface between the two fluid layers. We
| then have in the upper and lower fluids respectively | _

. Cpxy i) = f32 ¢ 030703
(2.20) | ' o, N

| Z_PCX,‘;,,},{) f°32’ + (s H-4) +P9(h-3)

-
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where : : :
/
- °

.22 Z €7 4+ (1-6b * (’H';{/j ¢ /;

Z' and Z give the topography of pressure surfaces in the upper
and lower fluids respectively. The topography of all surfaces in each layer
are the same due to the assumptions of homogeneity and hydrostatic balance

Thus the horizontal velocity of each layer is independent of z and the continuity

equation may be integrated directly
w'Ch) = 25 RS T (H-4 9 W

Yo NS
S b = VIS 52 (
wrh) = 89— + V¥4 = —h v~\v.

2.23
( ) /‘JW" - —fdﬂV'\y'SJ =

(K-Vx '} operating on (18) Yields the vorticity equation

(2.24) %é: Tt \\""\7'7?'7‘ 7TV = G

Expressing the vorticity geostrophically:

- 2T
s 272

b

(2.25)
{23), (24) and‘:'(ZlS) give for the lower layer
232 g - X dh
26) £ 7 + Vo - XX

If the upper layer is considered to be inert, (22) yields

2.2y 24— 9F
Jt U-€/ oa¢
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. Adding to this the assumption that the motion of the lower

fluid is parallel to the contours of the interface (i.e., Vivh=G) (26)

becomes
' T D& _ A
> : }L z%f f\y.vre_:z_‘llg—f = O
(228) { af L/_(./ A O

Comparing this with the non-divergent barotropic vorticity
equation of a rigid top single fluid tank model, we see that two additional

effects maglifest themselves in (28). First, there is a term containing the
135 ‘

a Jt? .
divergenc%&»vhi‘ch arises because the upper surface of the active fluigd

(i.e., the tropopause in the atmospheric analogue) is allowed to vif—y. e
: ' ) . ' -6 = (0’.70’ °
Secondly the magnitude of the divergence is amplified by the factor o, This

is due to the reduction in the gravitational restoring force on the perturbed
interface compared to that which would be exerted if the uﬁper fluid were
not present, i. e., if (G/"'; C.

To incorporate this term into the non-geostrophic barotropic
model, a stream function must again be introduced. An approximation

similar to (9) is used.

. 2
| £

' Substitution into (28) and adding the terrain effect from (14) yields -

5 AW L 5 ar, T(v, B
(2. 30) (\v V”() 3¢ J(yn) tan J,ba‘)



e - N
in which the str heric term has been linearized by using a n.value

of the stream function where it is undifferentiated and & is a representative .

ratio defined by
-
(1-€) A

(2.31y A =

Evaluationoof & and consequently of _« from atmospheric

sounding data appears doubtful. However, noting the correspondence

« 9z _ L 24
(232) Z 37 | h ot
where £ is the height of the 500 mb surface and h is the height of the tropo-
pause, Cressman found a value qf AT 4'. He ‘also made a series of forecasts

from the same initial data with values of 4 ranging from 0 to 8. These in- .

dicated an optimum value 4 = 4 with little changer between ¢ =4 and « =8.

Comparison of (30) and (14) reveals the-correspondence

| (4,5 }(,o'“y(aaaj(vf, s7%19°) o o
2.3 4 = FY¥° 0% ~

Due to the numerous assumptions involved iﬁ this determination
of 4, the empirically determined optimum value of </ = 4 is still used.
B. Engineering of the. Barotropic Equation
In binary corﬁputers multiplications and divisions by ﬁumbers
other than integer poWers of 2 consume approximately 10 times as much
computational time as other 0pefations. Further, keeping track of decimal

points is greatly facilitated if'all numbers used are expressed as a number

3
‘less than unity times an integer power of 2. Accordingly in iterative .
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. computat s economy dictates that constant coeff1c1ents be reduced to a

minimum by combmatmn and by scaling of independent va.rlables in units

which absorb recurring coefficignts other than integer powers of 2.

Constants and scaling used in the barotrdpic program (WP523)

are as follows:

UNITS

= 4

- ny distance = F8/ fm ad §0°N

A

d

Jr o aesier x 10" e
{'

~/
; ' sec
|. 45 842 X0 * s d

-9 =/
TF = {, 03125 X190 $ec
: _ ) (
9/{- - g,81/9 X0
}a = Z?-— =0,
Ysou '

/_f_-Sf:n ¢a’
e T
/ 1+ S ¢

}‘ .

map scale =

s 294543 x10°"

7 %(/s:,?gaJ(E‘O"f”): 17
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SCALING
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f = /4.5.‘025 X102
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. ) : ‘ FINITE DIFFERENCES
) At ‘ -
2 . fT AV 2 Yy, - Voo,
ot 7206 - '

\W,—C 1/5 77) = (%'4-_’“] -%'-9‘1.)( Wa;ji’l = a‘; d.-l

o_v
-(%;4(- - g;d-_j("?,;.“/j - .7‘70._,-/}-)
' y )20 "R T( 4, )
"yt A | ¥)+ S22 ,
% V - @ .ﬁ7240 '4d3' J( ‘) ]
[V 4—(21 z#;‘/i} AT - (7300) (22.3¢) 1o T 7;: l;)a—f-
(5 7.14:,](4794;)/"3 | + .

+ 2-&‘ J(?J‘J,J.S/g‘)]

(239 [\V‘~--’42-’—,% A : g 0032 D(A, D) +
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The equation solved in the barotropic model at the present time .
is : ,
A —, A A —, n 2
. " L o2 ad(n v +2’U(%/D/
(2. 35) 7 ¢ . ,
t , |
) el
This is solved for successive 2-hour changes or tendencies of w.
' o 4
For the initial iteration, &¢ ¥ is divided by 2 and then added to the initial
A

stream function, ¥, , to give a one hour forecast stream field. The forecast

is then continued as long as desired by iteration of the formula

. .n A A
(2.3) ¥, = Y., + Dz ¥y

The barotropic forecast is computed by the librarby program desig-
nated WP523. This program consists of a card deck and f‘ile #7 of the library .
tape, designated logical tape 1. The card deck feeds an initialization program,
the initial 500 mb heights and stream function data, decision tables and code
for printing the geostrophic isotachs. The iibrary tape contains four records
with contents as folléws:
Record #1 contains 4040 words (7610;)
0-1976 (0-36708) contains ? in the LHW and 3 in the RHW.

A -3
1988-3960 (3704 _- 75748) contains Pf in the LHW and

8
~ zeros in the RHW.
"~ Record #2 contains 1956 (36448) words constituting the utility

programs and the main part of the barotropic prbgram.
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f and p contained these fields in the units:

o -~ °* @O

"Record #3 contams (2162 (41628) words contalmng malnly the
smoothing and print programs WP203, and 210.
Record #4 contains 2162 (41628) words containing mainly WP9.

In writing the barotropic program, the data decks used t¢ supply

A, . A L_ -R{MQ
f\:.su‘f%;_sm v, F = z.&/ '—g_:‘;

These were then multiplied respectively by the constants .12509 and .8192

‘thus obtaining fand f:‘» as defined above.

(To counteract the non-conservation or loss of vorticity due to .
ivtera(te‘d truncation the stream function is multiplied by the factor 1.13 before
the barotropic forecasts begins.v This factor is removed beforé outpﬁtting
stream function data for relaxation, history tapes and punching.)

The SOO;fnb stx:eam function read onto tapes 2 and 4 initially and at
the end of each time step contains the c§efficient L =.0.741 252952 which is

not otherwise used by the program.

To avoid handling of large numbers all pressure height and stream

function data are punched and handled in the computer as departures from

normal. Appropriate constants are inserted in the print programs to obtain

printouts of absolute values.



iII. THE 2-LEVEL MODEL
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A, Derivation ‘

An atmospheric model is assumed in which:
{1} The wind varies linearly with pressure.

{Note that this is the thermotropic rather than
the equivalent barotropic assumption).
{2) ‘The vertical velocity has a m@ximum&t the
level of non-divergence, assumed to be at 600 mb
and vanighes at 200 and 1000 mb. The variation
of LD with pressure between these levels is
at most quadratic in p.
{3) The termal wind and thermal vorticity are .
quasi-geostrophic.

| {4) The vorticity equation may be approximated
by equation (2.1).
Equation {2.1) is now applied at 400 mb identified by subscript 1

and 800 mb identified by subsgcript 3 and the latter equation subtracted from

the former yielding ’ ‘ . '
' a ® o DUBI ‘BQ

Using modeling assumption (1) we define bar and prime quantities as follows:

- () +C),

3.2 () = ()

b & Values X
T e g

AT
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. dt level ™2 midway between levels 1 and 3.

_ » 5 TP G
(3. 3) ()= () _F
- 2

Equation (1) now takes the form

Q/

on’ Y - ‘e Vi - 4 M 2.
(3.4) ’5;1 Yo " 2(m op ~? P)' ©

We can evaluate %—“2 by the finite difference ratios.
)‘Ql - o:’u. - ] (D»\

 (3.5) 3p P - p, P
. %@b . Qg =~ Den - - oD vy
° Po = Pa - B]P

Here ¢ is placed under the A to identify the origin of this term. (4) now

LP = 4060 mb

simplifies to

’ - = Dwa
.< on' v.InR + VTR - —= =zO
(3.6) 3¢ T v | 2P

m———

It is apparent from (5) that V is non-divegent and may be
expfessed in terms of a stream function. Also, using modelihg assumption

(3), we can express the thermal wind and vorticity in terms of the thickness.

(3.7) v oz Kx V¥
2 kxvh e’ o 2 v*h
e V= If S ozf
Introducing these in (6) we obtain |
2 O~

. (3-9>VL>92£ + {‘\T((PJI_;;'V‘LJ-J- J(A,".l)‘ aﬁ‘f‘ nr =0
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We now eliminate tDm using.the adiabatic thermodynamic equation .

- D»Q%e . . 9 ©
(3.10) %za—%:'w+\yv’€hg+aﬁ”

: £ i‘? go| R
—7—' 100_6) Gigo‘: d‘ ._/_.9..’-— >
(3.11) © = C s | R ( r° ”

!

(3.12)  f.6 = Lo + (/"c’f,)f%f’ + Comstant

Since we are working in pressure corrdinates the first two terms
on the right of (10} are computed from (12) holding the pressure constant.
Multiplying through by the specific volume, &, (10) becomes
: ' G
. 2% L wveva -5 s = —-%Tg’e"‘
13 O = 3x T T | o .
Evaluating ¢{ at the mid-level using a finite difference ratio yields
o Sy = g Bl gk
- . . .
(3.4 o = 7 (5/,) g 2, vy
. (AA- + \\/ . VU
(3.15) W, * SHP

Substitution of this in (9) leads to the prognostic thickness equa-
tion giving the thickness tendency in terms of space derivatives only of the
initial fields of 800 to 400 mb thickness and 600 mb stream functions.

(3.16) ('v"‘_. 217 52-[-‘ = m TJ(yh) —-fJ(f";f"’Q"

g2/ ot o

TR &
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To complete the system of predictive eqﬁations, an equation for
%’;‘f. is required. Such an equation can be obtained either by applying
equation (2.1) at levels 1 and 3 aﬁd’addiﬁg or by applying it directly to level 2.
The latter procedure leads immediately to the  non-divergént barotropic vorti- |
city equafion

(3.18) 13/2““ T (Y, V"’u‘h"[)

The former pfocedure leads to

(3.19) V".aa:-f = (.W V!,!/-Hfj 4{ (‘"af

Rg

which contains two additional vterms; the S\;tcliffe development term and a
divergence term. The Sutcliffe development tefm_, the’ second on the right
of equation (19) is highly correla.ted with the term preceding it. Ih fact, in
 the equivalent barotropic model it appears s1mp1y as an incr-ease of approxi- .
mately 25% in the coefficient of the vorticity advection term, ——(U' v ‘/“"“fj
the divergence term, the third term on the right of equation (19), contains
two quantit'ies.wh‘ich are correlated, i.e. (,DM and V’A . Thus, this term
tends to have the same sign over the whole field so that repeated iferations .

lead to a net drop in heights over the whole field with a maximum in the center



‘Accordingly equation (19) was ‘applied in the form

ot ‘% o
(3. 20) ‘V“g—f : = T(F V'Ft) = j7 T(h fo4)

For reasons mentioned above it was considered unlikely that the
feed ba-ck from the thickness field expressed by the Sutcliffe term would pro-
- duce a forecast. significantly different from that already being produced by the
oiaerational- barotropic model,

This belief was confirmed by a 2 1/2 week trial period in August
1958 during which fo;ecaéts were prepared both with the 2-level model using
equations (16) and (20) and with thé operational barotropic m'odel using (2. 30}).
While this result was disappointing from the deve'10pment point of v‘iev?r, it was
operationally advantageous in that the cheapest SOO_mb forecast also proved to .
be at least as good as any avaiblable. Accordingly uée of equation (20) was dis-
continued and the curreﬁt "mesh model' initiated.

B. Modifications resulting from changes in
levels of input data

Since 800 mb is not a standard data level, the 2-level model was
originally planned to use 850 and 400 mb data. For reasons of economy 850
and 500 md data §vere actually used. With the thermotropic modeling assumption
that the wind varies linearly with pressure or that >the thermal gradient is inde-
pendent of pressure, any ievel of inpﬁt data can be used. |

Equatiori (16) is linear in h and tﬁus holds regardless of the thick-

ness layer used so long as the value of %iﬂ in o is consistent with the model‘
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Rewrite (14) using subscripts i for input and m for mod=1 levels

Jhe  RT.

=
3
=}
il

&

(3.21) @, = L= . O

= \ ¢ T oAp T .
YR RO
(3.22) ’/: = Tw\ + é. ' | ( & = constant- thermotropic model)

(3.23)

<.

7 |
Tm vy’ o Tm R - 7 4
: A, = T < N

628 o " Tt s P BP

(3. 25) A'm = ‘M. v_&'_ ) Z’h\l’m }]b :_: K(a; %)A&:

Substitute in (15) and (16). In (16) the coefficient h; appears in
every term and thus leaves the equation unchanged. From (15)

J ELPR W V’AJK(.&)‘")

(3.26) Dm = Swi 4'\ Pon 7

Thus regardless of the levels of input data, the énly change in the equations
will be the coefficient K(#,W\) in the -equation.

However,‘ input data levels which most accurately repr.esent the
vertical wind shear and horizontal temperature gradient- of the entire tropo-
sphere should give best results. Th\is_ presumably the gfeater Ap the better

so long as data levels do not lie about the level of maximum wind or tropo-

pause or so0 close to the ground that the data are influenced by surface effects.

i
| l

From this it again appears that input data level near 800 and 400 mb would be

best.



®° - X

C. Epgineering of the thickness forecast equation .
Constants and scaling uged in the thickness forecast program

(WP566) are as follows:

UNITS
4
d = 3;’/4 Jisdanmce = ZTEL Am a? '(0 Av4
. ‘ ‘4
Jr- f4.s4¢1 x 39 em T
-1
- . Scc
[ . fasEer « 07t 8@
o
.f = 1.631%ry « $07° sec
‘ &
/- =~ 95073 » J0 |
7 g )
' ' { +51n 62
. A S e
A = "ma-/v_ .sca/p. g(m, !.“1"' .s/i‘¢1v

7—?— = ‘7‘5‘ Z#_s“do
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. FIRST SCALING

-L, - 274
y = 27 E0 _
mn o= 2774 (imivves A <i for m = &F)
M o= 1w (_m.mu WA =1)
my = L298555¢ KIO—II‘." _ =
et - 2 a
| FINITE DIFFERENCES
A o
;[ i} 3620 Ach = //2 (hzee ~,AT_1)

@ Hv
VLA ;lb',”J C+h. . 'f‘A' { + Ll“‘/“l - 440 ’

J -2, ¢, )t X
J 2N

j(/ﬂn) = _(44,'_4.5 ] “/t«'-g ;)( ni/ju - 7?0; a'—-,l_) —
b (A{ d‘+1 -AL'J J".‘)(’zb,fij‘f - ’}Z:_IJ a‘)
I} ' 7 L L A 4
n = 2 1,[2 7(,‘75) ;‘f; V¥ + J +56¢+¢L %10 T b]
= 2( 33554432)(25)(9503) (275556)0 *TE + 074610 515 ¢

J .

—

~ 1(.(5‘8747)13\"qu3 —~+ 0746711 5/'»,¢



®° ' |

Substitution in (16) yiedls: -
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(Vz‘ £d 59 -
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o = o
. The first scaling was established to prevent spilling. We now introduce a

second scaling to reduce the number of multiplicative constants which are

not integer powers of 2.

SEC OND SCALING

*
(327) Let %7 =. 76906 = 2(577/5z)m v o+ 065629 simp
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We can now write equations (27) and (28) as

¢ @
A At gre .
(3.27) ®n = 2Am V' + RBorad

4

s (V- € F28) ok = —dBass T 2 )
o

=

—_— a 7 | - A A A
— 2 T (h, &)+ 4m¢6—%\27(%4j

where
A = .5792
B = .065629
C = .8633
D. The Stability factor and vertical motion .

The quantity S defined by equation (29) conveniently represents
the convective stébility of dry air. In the development of most NWP models
constants or quasi-constants such as f and Af are lumped with g and
the combined term is christened the stability factor. 'i‘hus, the term stability
factor has no commonly accepted definition. In this note the term

(3.29) 5 = —o 2O . AT r.) = {/—‘(C‘—L{" - g—lj
| Sp P & € P P-

will be called stability or stability coefficient term and the term

\

[ Y Y
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.111 be called Stability factor. The stability is a function of 7 /b} T

.but it varies most strongly with pressure. In 2-level models S is
usuallyvtreated. as a constant but ﬁeed not be. The vavriatior‘;si of S méy be
approximated through the thermodynamic equation as 'I;hOmpson (3.1) did or
by relating 5 to ¥ as Vanderman is now trying in a.:pplying eqpat"ibn.(’lé)
to 500 and 200 mb-data. | |

In Tablé 1 are ta_bulated vé;lues of S .for the standard atmosP»he_re_
computed from the three formulas iﬁdicated. The finite difference ra;t'ios pre-
sumably give Iriéan values of < fof the layers concerned.

TABLE1

s= -~ %Q/—”o—-é computed from

Values of the stability coefficient
.e standard atmosphere as point values and over the layer 800-400 mb using

the formulas indicated.

Pressure
level Sin 10~% c.g.s. units
mb S.z RT /o4~ S= L X6 = L 71
() (") 566 35 S =i (ap -2
100 179 (800-400 mb level
200 : 44.8 using 600 mb
300 6.96 values of £ &,& 1)
350 5.26 -
400 4,13
500 2.76 -
600 1.98 ' 2.07 1.91
675 1.60 |
700 1.50
800 1.18
850 1.06
900 . 954

1000 . 787

‘; . - It is apparent from (17) that 6"2 is not simply a function of
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stability since it also contains ‘9/0 and ‘Ef’ + . These are fixed by the ’

modeling assumptions at 400 mb each. Accordingly we obtain the values in

Table 2 for 0‘1 from the values of s in Table 1.

TABLE 2

T
Values of O (in 108 c.g.8. units) using the values of

from Table land &f = 4£p = 400 mb

B_T _Q_"T ;_‘L A6 _ .{~ ) _g]
P"(r,, /) 5Tee sp 57 7 QP DL

. 317 . 332 . 306

In his original derivation of the 2-level model Thompson (’3./)obtained a
U'L—equation. Since he planned to use 850 and 400 mb input data he defined o*
in terms of these levels and let 4 > 4/ =450 mb. Revised computations
of the stability factor have continued this practice.
The most recent revision by Captain John A. Brown, USAF, com- -

putes summer andAwinter values from the equation
3. 30 o_z_;‘épép_-l——g):iﬁﬁf—A_/j
(3.0 =—=lgr or) 7 o7 (eg,

where AP : DP = AP = FSO0- 406 = 450 m b,
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. F. 8,/0 } [age M b ~d7[u~\(~ J
, ;o= 264 a_*/'#—\a_s/f[»om va /lues

1

AT > Ty ~ s 36°C n wimdoy

-

o . .
"36 Cr./‘“\.&UMﬁw‘g‘y

Z79 ¢ L/J.,(q,”\jﬁ(,\/ q~/~v\;-¢s,b1;c‘)"e)

(2‘6 I)C.XXI()‘?J ( ?x,atf AA.?:) 2, /o6 Xio (g'(ll_AD

4T X 107

o sOmmey)

7&( w;n%er) &

1]

o 564 X/0
L
These valués are considerably larger than those in /Ta blé 2. Part of the
increase in the winter value is due to an a;ctual increase in the stability of the
atmosphere but both values are considerably larger than those of Table 2.
due to the larger value of A . This can be considered in two ways - first
as a change in the assumed (-profile or secondly as an artificial increase in
static stability. In either case the effect of‘the larger value is to reduce the
effect of the divergence or vertical motion term in the thickness equation and
thus- generally to reduce the magnitude of the thickness tendencies.

The -equation is corrected for the effect of the larger A/’., by

f vieture of containing é F explicitly and by a rhultiplicative constant 1.42

C
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representing the r’of 850-400 thickness to the 850-500 thlcknes.hese

2

. corrections, however, cannot correct for the effect of g on the
‘thickness tendencies which in turn influence e .

We may write the correct ed ©-equation as

LD:/-4'1 g—ﬁ 5: +\\/nVA)

28 S

1. 9704

= 2x10 (/ 1702)(1, 4)(.98)(4.5) - |
C GOGeg Er Al U (g 27 0(8 )

or

. D = Z( 83¢7/ )io AN
(3.31) . Z/;r: #4(.5792) 4;"J/ (v 4)7

7 _/ |

led O = 278

" ' P

o:D = ﬁi"_;_{-//z( + 4 (5792) A T4, 45/
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- 2 A w T
(3.32) <»-3~__3_D__/AZ_L.+4AWC=&//</
g2 L
A = .5972

;

Equation (32) is the one from which vertical velocity is computed
bfthe mes h model. The > -maps ,pri‘nted by the program pr:int tens, units -e.nd
tenths of the negative of units of eq. (31)., ie., = _c/)}ne.s cm™* .s»oc."/ at .every
other grid peint with contours at intervals of 1.5 units.

Siﬁc.e fhe computed value of omega ie for the 600 mb level, we can
obtain the equivalence in cm sec-! by taking the local deriva4tive on the 600;mb

. surface of the hydrostatic equation

- e .- 28D
°J .8 %1573 980 _

Thus the_printed «) -maps are-in units of 78 é¢m sec ‘_1 at 600 mb..

4. 7090 VERSION OF THE MESH MODEL

On 8 July 1960, the IBM 704 computer was deactivated to make
room for an IBM7090. During the transition period the mesh model was run
“ 0perat10nally on the National Bureau of Standards' 704 computer.

On 12 September 1960, routine operations were initiated on the

7090 with a new version of the mesh model. Other than programming changing

I this model differs from the 704 version in the following respects:
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. The mountain term has been improved .
and a surface friction term has been
added. See Cressman (4.1).
b. The factor 1.13 described on p,age 15 for
counteracting iterative truncation of the
vorticity field now multiplies only the
vorticity advection term.
d. | Stream field data output to the history
tape no longer'contains the factor
L =0.741252952.
The 7090 mountain term treats the ground pressure and wind speed as .
variables throughout the term and assumes that the terrain i nduced vertical
motion is completely compensated by horizonta.l divergence in the troposphere,

i.e., below 200 mb. Equations (2.2) and (2. 3) are now éxpres-sed as

9Dy __ . '
(4.2) 5?5«» -—,\V§ VP? (p;_zx/os)

\/ .
The constant @ = —d s replaced by the variablerx defined as follows:
Va'oa

(4.3  r = _\12_ {-0.% - 5"'0) g'-.l,gﬁvxlog‘

‘/eoa §xtof
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. For terrain slopes reaching the 500 mb level the 7090 mountain term
is 16 2/3 times as large as in the 704 version.
The friction tern:i is derived as follows. Denote the components of

the mass transport due to surface friction by My and My
oo co
(4.9 Ma '/ﬂua/z My = [ Cordz
4
Then the surface stresses Iy and /75 are given by

(45) T = fM) /g = o 7(‘ /7;(

X

’ We can now write an expression for the vertical velocity, "‘>H , at the top of

the friction layer due to mass divergence induced within the layer by surface

‘ PH _ H
‘DH B —:[ V'\Vc//v = ?/O/V,W/}.
7 ¢ -

friction.

(4.6)

ox 9} B F Qy o

Or expressing the stress in terms of a drag coefficient, Cb » times the kinetic

energy per unit volume.

Y
e W, = ?[9y(co°‘iva)‘ 5‘;((00;\4')]\

i
i
| .
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where 643 and U3 are the components of the ground level wind of speed . V’, .
Using the same approach as for the mountain term leads to the following fric-

tion term for the barotropic vorticity equation

‘With these changes the complete.barotropic forecast equation in the 7090 ver-

sion of the mesh model is as follows -

j(V" /mz)_,_, ,;___jj?j(lV ’?)

(4f9) e ' nr.- ( P
+(P —2.}!.10/ U/ )

'70(3;:1:05) [ a"[o"" W ! [C" )j

Scaling of the 7090 barotropic model ié the same as in the 704 version

except for Pﬂ'. )6‘//2 and 7 are defined as follows
A ¢
P‘a = 2P x J0
’ ‘ ~3
0 = ° 0 .
P J.2 X I
: A
Y: = 1.8 - 3.2 p
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Xpressing equation (4.9) in finite difference form, multiplying

through by 7200 d, = scaling one ¥ in each term and substituting values
g "™, g » g

leads to equation (2. 34) for the left hand side and the vorticity advection term.

However, the latter is now multiplied by 1.13 increasiﬁg the coefficient to 4.53

The mountain term becomes
7200d*nr 72006 T j( P
7290 1Y L P
J< g 3) 4(/% -2%x30%) s 7

)

m X -).XIO‘?) 4—J&

7000 (22.24)(10) . 5~ , 4 A ¢
4%2.(,./)‘_.1)_106 \ﬂ (—% Z/XIO.)
~ A

= 4,003%2 ~ 1; -

l ' The friction term becomes

[ S

_eosdtnrPg fm o/, N I
7568 a2 iy rcad )F)

”ﬁ‘f'(%- 2%x15%)

+ EJH gy ((o 2:31 4%%;”:[@1‘2)% (421%]_"])]

~ . 4.003LmF s I7 3
| L Sx(ﬁ; A?]/(AV) +(Mv))

/6(_f31 ~.1) /o,‘Jf
t 5 <(o Ay 1’@‘&)’# 'C_Af,)ﬂj

- ﬂgl@gfc_{__é_?)r n /+5M__éo |
—.1 { —{~St'm¢3 Sln¢/ ]

A\
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Combining these we obtain the barotropic forecast equatmn sol by the 7090

A
4 —_—

: L L -, 1 A
< \772_~, 742;2{;_’) AT,-,V - 45 VA J (ZPJ 7’-?-)
» 4—?"';11 l+511465
-f— e j) f (W /U') T (é ?A/)/-/I+S/»¢)J.> JX

)( /_f ((DA ZP/(AU) + (4 W)*y ((DA ’#%“:’0 "(AJWJJ
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The purpose of this supplement to INWP Office Note No. 15 (Revised
1 October 1960) is to provide a more logical basis for the derivation of the
scaled finite-difference barotropic equations. This supplement covers the

same material as on pp. 11-13.

The derivation proceeds from equation {2.30} on page 9, and ends
with equation (2.34) on page 13.

Equation (2.30):

. | )
v - )2 = -g(#)- an T (K2

Let us deal alsoc with the evaluation of vorticity. To this end we insert an

. equation {2.30a):

. Equation (2. 30a}):

7:%72W+f
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SCAL.ING:AND FINITE DIFFERUENCES

A (V72
‘%:: —
T gl
£ f
f = 7t
A ___7_7;_________
74 5/@[
Nt
o 7
| —a 8’770/2
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A?"W = KM—- %-l '

Vl?ﬂ : ) % %{, /s * %;M‘ v 75./'-/ “7/ }fj.

](f?/ = ‘7?»/,.:' B 7%'—/,./)(74; Ser ZZ,, /-/)
(% ses = i )T = Te01)

Substitution into equation (2 30) and (2.30a) ylelds equation (2. 34),
on page 13, and equation (2.34a) which we here insert:

- Equation .(2.34): .
72 AT A
._ (Vg.““»‘%““ﬂ“?“i‘)l‘r% |
_ TR P) r10af I(EF)

Equation (2. 34a):

z 7 £
7 = (V ’”"’W‘)
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SCALING PARAMETERS

f—a 950 cm ,sec—%
L= 27

—
-y
—

< /77

£ 2 11 g #5°
2 = 07292/ x/oﬁy sec”’
At = 1 hr

d = 38! hm
/b —_—

2 = /Joodo Wfb

- 042

T oy P
) t
T R
I

Note that the derviation of equations (2.34) and (2.34a) is independent
‘of the yalues of the scaling parameters.
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